
Supplementary Information

SUPPLEMENTARY NOTE 1: MICROCANONICAL DERIVATION OF THE NATS’S FORM

Upon describing the set-up, we will define an approximate microcanonical subspace M. Normalizing the projector
onto M yields an approximate microcanonical state Ω. Tracing out most of the system from Ω leads, on average, to a
state close to the Non-Abelian Thermal State γv. Finally, we derive conditions under which M exists.

Set-up: Consider a system S associated with a Hilbert space H of dimension d := dim(H). Let H ≡ Q0 denote the
Hamiltonian. We call observables denoted by Q1, . . . , Qc “charges.” Without loss of generality, we assume that the
Qj ’s form a linearly independent set. The Qj ’s do not necessarily commute with each other. They commute with the
Hamiltonian if they satisfy a conservation law,

[H,Qj ] = 0 ∀j = 1, . . . , c. (1)

This conservation is relevant to dynamical evolution, during which the NATS may arise as the equilibrium state.
However, our microcanonical derivation does not rely on conservation.

Bath, blocks, and approximations to charges: Consider many copies n of the system S. Following Ogata [1],

we consider an average Q̃j , over the n copies, of each charge Qj (Fig. 2 of the main text):

Q̃j :=
1

n

n−1∑
`=0

I⊗` ⊗Qj ⊗ I⊗(n−1−`). (2)

In the large-n limit, the averages Q̃j are approximated by observables Ỹj that commute [1, Theorem 1.1]:

‖Q̃j − Ỹj‖∞ ≤ εO(n)→ 0, and (3)

[Ỹj , Ỹk] = 0 ∀j, k = 0, . . . , c. (4)

The Ỹj ’s are defined on H⊗n, ‖ · ‖∞ denotes the operator norm, and εO(n) denotes a function that approaches zero as
n→∞.

Consider m blocks of n copies of S, i.e., N = nm copies of S. We can view one copy as the system of interest and
N − 1 copies as a bath. Consider the average, over N copies, of a charge Qj :

Q̄j :=
1

N

N−1∑
`=0

I⊗` ⊗Qj ⊗ I⊗(N−1−`). (5)

This Q̄j equals also the average, over m blocks, of the block average Q̃j :

Q̄j =
1

m

m−1∑
λ=0

I⊗λn ⊗ Q̃j ⊗ I⊗[N−n(λ+1)]. (6)

Let us construct observables Ȳj that approximate the Q̄j ’s and that commute: [Ȳj , Ȳk] = 0, and ‖Q̄j − Ȳj‖∞ ≤ ε for

all m. Since Ỹj approximates the Q̃j in Eq. (6), we may take

Ȳj =
1

m

m−1∑
λ=0

I⊗λn ⊗ Ỹj ⊗ I⊗[N−n(λ+1)]. (7)

Approximate microcanonical subspace: Recall the textbook derivation of the form of the thermal state of a
system that exchanges commuting charges with a bath. The composite system’s state occupies a microcanonical
subspace. In every state in the subspace, every whole-system charge, including the energy, has a well-defined value.
Charges that fail to commute might not have well-defined values simultaneously. But, if N is large, the Q̄j ’s nearly
commute; they can nearly have well-defined values simultaneously. This approximation motivates our definition of an
approximate microcanonical subspaceM. If the composite system occupies any state inM, one has a high probability
of being able to predict the outcome of a measurement of any Q̄j .
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Definition 1. For η, η′, ε, δ, δ′ > 0, an (ε, η, η′, δ, δ′)-approximate microcanonical (a.m.c.) subspace M of H⊗N
associated with observables Qj and with approximate expectation values vj consists of the states ω for which the
probability distribution over the possible outcomes of a measurement of any Q̄j peaks sharply about vj. More precisely,
we denote by Πη

j the projector onto the direct sum of the eigensubspaces of Q̄j associated with the eigenvalues in the

interval [vj − ηΣ(Qj), vj + ηΣ(Qj)]. Here, Σ(Q) = λmax(Q)− λmin(Q) is the spectral diameter of an observable Q. M
must satisfy the following conditions:

1. Let ω denote any state, defined on H⊗N , whose support lies in M. A measurement of any Q̄j is likely to yield a
value near vj:

supp(ω) ⊂M ⇒ Tr(ωΠη
j ) ≥ 1− δ ∀j. (8)

2. Conversely, consider any state ω, defined on H⊗N , whose measurement statistics peak sharply. Most of the
state’s probability weight lies in M:

Tr(ωΠη′

j ) ≥ 1− δ′ ∀j ⇒ Tr(ωP ) ≥ 1− ε, (9)

wherein P denotes the projector onto M.

This definition merits two comments. First, M is the trivial (zero) subspace if the vj ’s are inconsistent, i.e., if no
state ρ satisfies Tr(ρQj) = vj ∀j. Second, specifying (η, η′, ε, δ, δ′) does not specify a unique subspace. The inequalities
enable multiple approximate microcanonical subspaces to satisfy Definition 1. The definition ensures, however, that
any two such subspaces overlap substantially.

The approximate microcanonical subspace leads to the NATS: Let us show that Definition 1 exhibits the
property desired of a microcanonical state: The reduced state of each subsystem is close to the NATS.

We denoted by P the projector onto the approximate microcanonical subspace M. Normalizing the projector
yields the approximate microcanonical state Ω := 1

Tr(P )P . Tracing out all subsystems but the `th yields Ω` :=

Tr0,...,`−1,`+1,...,N−1(Ω).
We quantify the discrepancy between Ω` and the NATS with the relative entropy:

D(Ω`‖γv) := −S(Ω`)− Tr
(

Ω` log(γv)
)
. (10)

wherein S(Ω`) := −Tr
(

Ω` log(Ω`)
)

is the von Neumann entropy. The relative entropy is lower-bounded by the trace

norm, which quantifies quantum states’ distinguishability [2]:

D(Ω`‖γv) ≥ 1

2
‖Ω` − γv‖21 . (11)

Theorem 2. Let M denote an (ε, η, η′, δ, δ′)-approximate microcanonical subspace of H⊗N associated with the Qj’s

and the vj’s, for N ≥ [2 ‖Qj‖2∞ /(η2)] log(2/δ′). The average, over the N subsystems, of the relative entropy between
each subsystem’s reduced state Ω` and the NATS is small:

1

N

N−1∑
`=0

D(Ω`‖γv) ≤ θ + θ′. (12)

This θ = (const.)/
√
N is proportional to a constant dependent on ε, on the vj ’s, and on d. This θ′ = (c+ 1)(const.)(η+

2δ ·maxj{‖Qj‖∞}) is proportional to a constant dependent on the vj’s.

Proof. We will bound each term in the definition (10) of the relative entropy D. The von Neumann-entropy term
S(Ω`), we bound with Schumacher’s theorem for typical subspaces. The cross term is bounded, by the definition of the
approximate microcanonical subspace M, in terms of the small parameters that quantify the approximation.

First, we lower-bound the dimensionality of M in terms of ε, η, η′, δ, and δ′. Imagine measuring some Q̄j of the
composite-system state γ⊗Nv . This is equivalent to measuring each subsystem’s Qj , then averaging the outcomes. Each

Qj measurement would yield a random outcome Xj
` ∈ [λmin(Qj), λmax(Qj)], for ` = 0, . . . , N − 1. The average of these

Qj-measurement outcomes is tightly concentrated around vj , by Hoeffding’s Inequality [3]:

1− Tr
(
γ⊗Nv Πη

j

)
= Pr

{∣∣∣ 1

N

N−1∑
`=0

Xj
` − vj | > ηΣ(Qj)

}
(13)

≤ 2 exp
(
−2η2N

)
(14)

≤ δ′, (15)
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for large enough N . From the second property in Definition 1, it follows that Tr
(
γ⊗Nv P

)
≥ 1 − ε. Hence M is a

high-probability subspace of γ⊗Nv .

By Schumacher’s Theorem, or by the stronger [4, Theorem I.19],

S(Ω) = log
(

dim(P )
)
≥ NS

(
γv
)
− (const.)

√
N (16)

= NS
(
γv
)
−Nθ, (17)

wherein θ := (const.)/
√
N . The constant depends on ε, d, and the charge values vj . The entropy’s subadditivity

implies that S(Ω) ≤
∑N−1
`=0 S(Ω`). Combining this inequality with Ineq. (17) yields

S
(
γv
)
− θ ≤ 1

N

N−1∑
`=0

S(Ω`). (18)

The support of Ω lies within M: supp(Ω) ⊂M. Hence Tr(Ω Πη
j ) = 1 ≥ 1− δ for all j. Let Ω̄ := 1

N

∑N−1
`=0 Ω`. We

will bound the many-copy average

wj := Tr(Qj Ω̄) =
1

N

N−1∑
`=0

Tr(Ω`Qj) (19)

= Tr(Ω Q̄j). (20)

Let us bound this trace from both sides. Representing Q̄j =
∑
q qΠq

j in its eigendecomposition, we upper-bound the
following average:

Tr(Ω Q̄j) =
∑
q

qTr
(
Ω Πq

j

)
(21)

≤ [vj + ηΣ(Qj)]Tr
(
Ω Πη

j

)
+ ‖Qj‖∞ Tr

(
Ω
[
I−Πη

j

] )
(22)

≤ vj + ‖Qj‖∞ (η + δ). (23)

We complement this upper bound with a lower bound:

Tr(Ω Q̄j) ≥ [vj − ηΣ(Qj)]Tr
(
Ω Πη

j

)
− ‖Qj‖∞ Tr

(
Ω
[
I−Πη

j

] )
(24)

≥ [vj − ηΣ(Qj)](1− δ)− ‖Qj‖∞ δ. (25)

Inequalities (23) and (25) show that the whole-system average wj is close to the single-copy average vj :

ξj := |wj − vj | =
∣∣Tr(Ω Q̄j)− vj

∣∣ (26)

≤ (η + 2δ) ‖Qj‖∞ . (27)

Let us bound the average relative entropy. By definition,

1

N

N−1∑
`=0

D (Ω`‖γv) = − 1

N

N−1∑
`=0

[
S(Ω`) + Tr

(
Ω` log(γv)

)]
. (28)

Let us focus on the second term. First, we substitute in the form of γv from Eq. (1) of the main text. Next, we
substitute in for wj , using Eq. (19). Third, we substitute in ξj , using Eq. (26). Fourth, we invoke the definition of
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S(γv), which we bound with Ineq. (18):

− 1

N

N−1∑
`=0

Tr
(

Ω` log(γv)
)

(29)

=
1

N

N−1∑
`=0

[
log(Z) +

c∑
j=0

µj Tr(Ω`Qj)
]

(30)

= logZ +

c∑
j=0

µjwj (31)

≤ logZ +

c∑
j=0

µjvj +

c∑
j=0

|µj | ξj (32)

= S(γv) +

c∑
j=0

|µj | ξj (33)

≤ 1

N

N−1∑
`=0

S(Ω`) + θ +

c∑
j=0

|µj | ξj . (34)

Combining this inequality with Eq. (28) yields

1

N

N−1∑
`=0

D (Ω`‖γv) ≤ θ +

c∑
j=0

|µj | ξj (35)

≤ θ + (c+ 1)

(
max
j
|µj |
)(

max
j
ξj

)
(36)

≤ θ + (c+ 1)

(
max
j
|µj |
)[

(η + 2δ) ·max
j
{‖Qj‖∞}

]
. (37)

The final inequality follows from Ineq. (27). Since the vj ’s determine the µj-values, (c+ 1) (maxj |µj |) is a constant
determined by the vj ’s. The final term in Ineq. (37), therefore, is upper-bounded by θ′ = (c + 1)(const.)(η + 2δ) ·
maxj

{
‖Qj‖∞

}
.

Existence of an approximate microcanonical subspace: Definition 1 does not reveal under what conditions
an approximate microcanonical subspace M exists. We will show that an M exists for ε, η, η′, δ, δ′ that can approach
zero simultaneously, for sufficiently large N . First, we prove the existence of a microcanonical subspace for commuting
observables. Applying this lemma to the Ỹj ’s shows that M exists for noncommuting observables.

Lemma 3. Consider a Hilbert space K with commuting observables Xj, j = 0, . . . , c. For all ε, η, δ > 0 and for

sufficiently large m, there exists an
(
ε, η, η′=η, δ, δ′= ε

c+1

)
-approximate microcanonical subspace M of K⊗m associated

with the observables Xj and with the approximate expectation values vj.

Proof. Recall that

X̄j =
1

m

m−1∑
λ=0

I⊗λ ⊗Xj ⊗ I⊗(m−1−λ) (38)

is the average of Xj over the m subsystems. Denote by

Ξηj :=
{
vj − η ≤ X̄j ≤ vj + η

}
(39)

the projector onto the direct sum of the X̄j eigenspaces associated with the eigenvalues in [vj − η, vj + η]. Consider
the subspace Mη

com projected onto by all the Xj ’s. The projector onto Mη
com is

Pcom := Ξη0 Ξη1 · · ·Ξηc . (40)
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Denote by ω any state whose support lies in Mη
com. Let us show that ω satisfies the inequality in (8). By the

definition of Pcom, supp(ω) ⊂ supp(Ξηj ). Hence Tr
(
ωΞηj

)
= 1 ≥ 1− δ.

Let us verify the second condition in Definition 1. Consider any eigenvalue ȳj of Ȳj , for each j. Consider the joint
eigensubspace, shared by the Ȳj ’s, associated with any eigenvalue ȳ1 of Ȳ1, with any eigenvalue ȳ2 of Ȳ2, etc. Denote
the projector onto this eigensubspace of H⊗N by Pȳ1,··· ,ȳc .

Let δ′ = ε
c+1 . Let ω denote any state, defined on H⊗N , for which Tr

(
ω Ξηj

)
≥ 1−δ′, for all j = 0, . . . , c. The left-hand

side of the second inequality in (9) reads, Tr (ωPcom). We insert the resolution of identity
∑
ȳ0,...,ȳc

Pȳ0...ȳc into the

trace. The property P2 = P of any projector P enables us to square each projector. Because [Pȳ0...ȳc , Pcom] = 0,

Tr (ωPcom) = Tr

( ∑
ȳ0,...,ȳc

Pȳ0...ȳcωPȳ0...ȳcPcom

)
(41)

=: Tr (ω′Pcom) , (42)

wherein ω′ :=
∑
ȳ0,...,ȳc

Pȳ0...ȳcωPȳ0...ȳc is ω pinched with the complete set {Pȳ0ȳ1...ȳc} of projectors [5]. By this

definition of ω′, Tr
(
ω′ Ξηj

)
= Tr

(
ω Ξηj

)
≥ 1− δ′, and [ω′,Ξηj ] = 0. For all j, therefore,

ω′ Ξηj = ω′ − ω′
(
I− Ξηj

)
=: ω′ −∆j , (43)

wherein

Tr(∆j) = Tr
(
ω′
[
I− Ξηj

])
≤ δ′. (44)

Hence

Tr (ω′Pcom) = Tr (ω′ Ξη0 Ξη1 · · ·Ξηc ) (45)

≥ Tr ([ω′ −∆0] Ξη1 · · ·Ξηc ) (46)

≥ Tr (ω′ Ξη1 · · ·Ξηc )− δ′ (47)

≥ Tr (ω′)− (c+ 1)δ′ (48)

= 1− (c+ 1)δ′ = 1− ε. (49)

As ω satisfies (9), Mη
com is an (ε, η, η′=η, δ, δ′= ε

c+1 )-approximate microcanonical subspace.

Lemma 3 proves the existence of an approximate microcanonical subspace Mη
com for the Ỹj ’s defined on K = H⊗n

and for sufficiently large n. In the subsequent discussion, we denote by Υη
j the projector onto the direct sum of the Ȳj

eigenspaces associated with the eigenvalues in [vj − ηΣ(Ỹj), vj + ηΣ(Ỹj)]. Passing from Ỹj to Q̃j to Qj , we now prove
that the same Mη

com is an approximate microcanonical subspace for the Qj ’s.

Theorem 4. Under the above assumptions, for every ε > (c+ 1)δ′ > 0, η > η′ > 0, δ > 0, and all sufficiently large N ,
there exists an (ε, η, η′, δ, δ′)-approximate microcanonical subspace M of H⊗N associated with the observables Qj and
with the approximate expectation values vj.

Proof. Let η̂ = (η + η′)/2. For a constant CAP > 0 to be determined later, let n be such that εO = εO(n) from

Ogata’s result [1, Theorem 1.1] is small enough so that η > η̂ + CAPε
1/3
O and η′ < η̂ − CAPε

1/3
O , as well as such that

δ̂ = δ − CAPε
1/3
O > 0 and such that δ̂′ = δ′ + CAPε

1/3
O ≤ ε

c+1 .

Choose m in Lemma 3 large enough such that an (ε, η̂, η̂′=η̂, δ̂, δ̂′)-approximate microcanonical subspaceM :=Mcom

associated with the commuting Ỹj exists, with approximate expectation values vj .
Let ω denote a state defined on H⊗N . We will show that, if measuring the Ȳj ’s of ω yields sharply peaked statistics,

measuring the Q̄j ’s yields sharply peaked statistics. Later, we will prove the reverse (that sharply peaked Q̄j statistics
imply sharply peaked Ȳj statistics).

Recall from Definition 1 that Πη
j denotes the projector onto the direct sum of the Q̄j eigenstates associated with

the eigenvalues in [vj − ηΣ(Qj), vj + ηΣ(Qj)]. These eigenprojectors are discontinuous functions of the observables.
Hence we look for better-behaved functions. We will approximate the action of Πη

j by using

fη0,η1(x) :=

{
1, x ∈ [−η0, η0]

0, |x| > η1
, (50)
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for η1 > η0 > 0. The Lipschitz constant of f is bounded by λ := 1
η1−η0 ∈ R.

The operator fη0Σ(Qj),η1Σ(Qj)(Q̄j−vjI) approximates the projector Πη0
j . Indeed, as a matrix, fη0Σ(Qj),η1Σ(Qj)(Q̄j−vjI)

is sandwiched between the projector Πη0
j , associated with a width-η0 interval around vj , and a projector Πη1

j

associated with a width-η1 interval of eigenvalues. fη,η is the indicator function on the interval [−η, η]. Hence
Πη
j = fηΣ(Qj),ηΣ(Qj)(Q̄j − vjI). Similarly, we can regard fη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI) as sandwiched between Υη0

j and

Υη1
j .

Because Q̄j is close to Ȳj , f(Q̄j) is close to f(Ȳj): Let n be large enough so that, by [1, Theorem 1.1], ‖Q̄j−Ȳj‖∞ ≤ εO.
By [6, Theorem 4.1],

‖fη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI)− fη0Σ(Qj),η1Σ(Qj)(Q̄j − vjI)‖∞
≤ κλ, (51)

wherein κλ = CAPλε
2/3
O and CAP denotes a universal constant. Inequality (51) holds because f is λ-Lipschitz and

bounded, so the Hölder norm in [6, Theorem 4.1] is proportional to λ.
Let us show that, if measuring the Ȳj ’s of ω yields sharply peaked statistics, then measuring the Q̄j ’s yields sharply

peaked statistics, and vice versa. First, we choose η0 = η, η1 = η + ε
1/3
O , and λ = ε

−1/3
O such that κ := κλ = CAPε

1/3
O .

By the “sandwiching,”

Tr

(
ωΠ

η+ε
1/3
O

j

)
≥ Tr

(
ωfη0Σ(Qj),η1Σ(Qj)

[
Q̄j − vjI

])
. (52)

To bound the right-hand side, we invoke Ineq. (51):

κ ≥ ‖fη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI)
− fη0Σ(Qj),η1Σ(Qj)(Q̄j − vjI)‖∞ (53)

≥ Tr
(
fη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI)

− fη0Σ(Qj),η1Σ(Qj)(Q̄j − vjI)
)

(54)

≥ Tr
(
ω
[
fη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI)

− fη0Σ(Qj),η1v(Q̄j − vjI)
])
. (55)

Upon invoking the trace’s linearity, we rearrange terms:

Tr
(
ωfη0Σ(Qj),η1Σ(Qj)(Q̄j − vjI)

)
(56)

≥ Tr
(
ωfη0Σ(Qj),η1Σ(Qj)(Ȳj − vjI)

)
− κ (57)

≥ Tr
(
ωΥη

j

)
− κ. (58)

The final inequality follows from the “sandwiching” property of fη0,η1 . Combining Ineqs. (52) and (58) yields a bound
on fluctuations in Q̄j measurement statistics in terms of fluctuations in Ȳj statistics:

Tr

(
ωΠ

η+ε
1/3
O

j

)
≥ Tr

(
ωΥη

j

)
− κ. (59)

Now, we bound fluctuations in Ȳj statistics with fluctuations in Q̄j statistics. If η0 = η − ε1/3O ; η1 = η; λ = ε
−1/3
O , as

before, and κ = κλ = CAPε
1/3
O , then

Tr
(
ωΥη

j

)
≥ Tr

(
ωΠ

η−ε1/3O
j

)
− κ. (60)

Using Ineqs. (59) and (60), we can now show that M :=Mη̂
com is an approximate microcanonical subspace for the

observables Qj and the approximate charge values vj . In other words, M is an approximate microcanonical subspace

for the observables Q̃j .
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First, we show that M satisfies the first condition in Definition 1. Recall that Mη
com is an

(
ε, η, η′=η, δ, δ′= ε

c

)
-

approximate microcanonical subspace for the observables Ỹj with the approximate charge values vj , for all ε, η, δ > 0

and for large enough m (Lemma 3). Recall that N = nm. Choose δ = δ̂ − κ > 0. Let ω denote any state, defined on

H⊗N , whose support lies in M =Mη
com. Let η̂ = η + ε

1/3
O . By the definitions of ω and M, Tr

(
ωΥη

j

)
= 1 ≥ 1− δ. By

Ineq. (59), therefore,

Tr
(
ωΠη̂

j

)
≥ Tr

(
ωΥη

j

)
− κ ≥ 1− δ − κ = 1− δ̂. (61)

Hence M satisfies Condition 1 in Definition 1.
To show that M satisfies Condition 2, let η̂′ = η − ε1/3O , and let δ̂′ = δ′ − κ = ε

c − CAPε
1/3
O > 0. Let ω in H⊗N

satisfy Tr
(
ωΠη̂′

j

)
≥ 1− δ̂′ for all j. By Ineq. (60),

Tr
(
ωΥη

j

)
≥ 1− δ̂′ − κ = 1− δ′. (62)

By Condition 2 in the definition of Mη
com, therefore, at least fraction 1 − ε of the probability weight of ω lies in

Mη
com = M: Tr (ωPcom) ≥ 1 − ε. As M satisfies Condition 2, M is an (ε, η̂, η̂′, δ̂, δ̂′)-approximate microcanonical

subspace.

This derivation confirms physically the information-theoretic maximum-entropy derivation. By “physically,” we
mean, “involving the microcanonical form of a composite system’s state and from the tracing out of an environment.”
The noncommutation of the charges Qj required us to define an approximate microcanonical subspace M. The proof
of the subspace’s existence, under appropriate conditions, crowns the derivation.

The physical principle underlying this derivation is, roughly, the Correspondence Principle. The Qj ’s of one copy of
the system S fail to commute with each other. This noncommutation constitutes quantum mechanical behavior. In
the many-copy limit, however, averages Q̄j of the Qj ’s are approximated by commuting Ȳj ’s, whose existence was
proved by Ogata [1]. In the many-copy limit, the noncommuting (quantum) problem reduces approximately to the
commuting (classical) problem.

We stress that the approximate microcanonical subspaceM corresponds to a set of observables Qj and a set of values
vj . Consider the subspace M′ associated with a subset of the Qj ’s and their vj ’s. This M′ differs from M. Indeed,
M′ typically has a greater dimensionality thanM, because fewer equations constrain it. Furthermore, consider a linear
combination Q′ =

∑c
j=0 µjQj . The average Q̄′ of N copies of Q′ equals

∑c
j=0 µjQ̄j . The approximate microcanonical

subspace M of the whole set of Qj ’s has the property that all states that lie mostly on it have sharply defined values
near v′ =

∑c
j=0 µjvj . Generally, however, our M is not an approximate microcanonical subspace for Q′, or a selection

of Q′, Q′′, etc., unless these primed operators span the same set of observables as the Qj ’s.

SUPPLEMENTARY NOTE 2: DYNAMICAL CONSIDERATIONS

Inequality (7) of the main text is derived as follows: Let us focus on ‖ρ` − γv‖1. Adding and subtracting Ω` to the
argument, then invoking the Triangle Inequality, yields

‖ρ` − γv‖1 ≤ ‖ρ` − Ω`‖1 + ‖Ω` − γv‖1. (63)

We average over copies ` and average (via 〈.〉) over pure whole-system states |ψ〉. The first term on the right-hand side
is bounded in Ineq. (6) of the main text:〈

1

N

N−1∑
`=0

‖ρ` − γv‖1
〉
≤ d√

DM

+

〈
1

N

N−1∑
`=0

‖Ω` − γv‖1

〉
. (64)

To bound the final term, we invoke Pinsker’s Inequality [Ineq. (11)], ‖Ω` − γv‖1 ≤
√

2D(Ω`||γv). Averaging over `
and over states |ψ〉 yields 〈

1

N

N−1∑
`=0

‖Ω` − γv‖1

〉
≤

〈
1

N

N−1∑
`=0

√
2D(Ω`||γv)

〉
(65)

≤

〈√√√√ 2

N

N−1∑
`=0

D(Ω`||γv)

〉
, (66)
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wherein D denotes the relative entropy. The second inequality follows from the square-root’s concavity. Let us double
each side of Ineq. (12), then take the square-root:√√√√ 2

N

N−1∑
`=0

D(Ω`‖γv) ≤
√

2(θ + θ′). (67)

Combining the foregoing two inequalities, and substituting into Ineq. (64), yields Ineq. (7) of the main text.

SUPPLEMENTARY NOTE 3: DERIVATION FROM COMPLETE PASSIVITY AND RESOURCE
THEORY

An alternative derivation of the thermal state’s form relies on complete passivity. One cannot extract work from
any number of copies of the thermal state via any energy-preserving unitary [7, 8]. We adapt this argument to
noncommuting conserved charges. The Non-Abelian Thermal State is shown to be the completely passive “free” state
in a thermodynamic resource theory.

Resource theories are models, developed in quantum information theory, for scarcity. Using a resource theory, one
can calculate the value attributable to a quantum state by an agent limited to performing only certain operations,
called “free operations.” The first resource theory described pure bipartite entanglement [9]. Entanglement theory
concerns how one can manipulate entanglement, if able to perform only local operations and classical communications.
The entanglement theory’s success led to resource theories for asymmetry [10], for stabilizer codes in quantum
computation [11], for coherence [12], for quantum Shannon theory [13], and for thermodynamics, amongst other
settings.

Resource-theoretic models for heat exchanges were constructed recently [14, 15]. The free operations, called
“thermal operations,” conserve energy. How to extend the theory to other conserved quantities was noted in [15]. The
commuting-observables version of the theory was defined and analyzed in [16, 17], which posed questions about modeling
noncommuting observables. We extend the resource theory to model thermodynamic exchanges of noncommuting
observables. The free operations that define this theory, we term “Non-Abelian Thermal Operations” (NATO). This
resource theory is related to that in [18]. We supplement earlier approaches with a work payoff function, as well as
with a reference frame associated with a non-Abelian group.

This section is organized as follows. First, we introduce three subsystems and define work. Next, we define NATO.
The NATO resource theory leads to the NATS via two routes:

1. The NATS is completely passive: The agent cannot extract work from any number of copies of γv.

2. The NATS is the state preserved by NATO, the operations that require no work.

The latter condition leads to “second laws” for thermodynamics that involves noncommuting conserved charges. The
second laws imply the maximum amount of work extractable from a transformation between states.

Subsystems: To specify a physical system in this resource theory, one specifies a Hilbert space, a density operator,
a Hamiltonian, and operators that represent the system’s charges. To specify the subsystem S of interest, for example,
one specifies a Hilbert space H; a density operator ρS; a Hamiltonian HS; and charges Q1S

, . . . , QcS .
Consider the group G formed from elements of the form eiµ·Q. Each Qj can be viewed as a generator. G is

non-Abelian if the Qj ’s fail to commute with each other. Following [19], we assume that G is a compact Lie group.
The compactness assumption is satisfied if the system’s Hilbert space is finite-dimensional. (We model the reference
frame’s Hilbert space as infinite-dimensional for convenience. Finite-size references can implement the desired protocols
with arbitrary fidelity [19].)

We consider three systems, apart from S: First, R denotes a reservoir of free states. The resource theory is nontrivial,
we prove, if and only if the free states have the NATS’s form. Second, a battery W stores work. W doubles as a
non-Abelian reference frame. Third, any other ancilla is denoted by A.

The Hamiltonian Htot := HS +HR +HW +HA governs the whole system. The jth whole-system charge has the
form Qjtot := QjS +QjR +QjW +QjA . Let us introduce each subsystem individually.

Battery: We define work by modeling the system that stores the work. In general, the mathematical expression for
thermodynamic work depends on which physical degrees of freedom a system has. A textbook example concerns a gas,
subject to a pressure p, whose volume increases by an amount dV . The gas performs an amount dW = p dV of work.
If a force F stretches a polymer through a displacement dx, dW = −F dx. If a material’s magnetization decreases by
an amount dM in the presence of a strength-B magnetic field, dW = B dM .
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We model the ability to convert, into a standard form of work, a variation in some physical quantity. The model
consists of an observable called a “payoff function.” The payoff function is defined as

W :=

c∑
j=0

µjQj . (68)

We generally regard the payoff function as an observable of the battery’s. We can also consider the W of the system of
interest. If the system whose W we refer to is not obvious from context, we will use a subscript. For example, WW

denotes the battery’s work function.
One might assume that the battery exchanges only finite amounts of charges. Under this assumption, a realistically

sized battery can implement the desired protocols with perfect fidelity [19].

Work: We define as average extracted work W the difference in expectation value of the payoff function W:

W := Tr (ρ′WW)− Tr (ρWW) . (69)

The battery’s initial and final states are denoted by ρW and ρ′W. If the expectation value increases, then W > 0, and
work has been extracted from the system of interest. Otherwise, work has been expended.

We focus on the average work extracted in the asymptotic limit: We consider processing many copies of the system,
then averaging over copies. Alternatively, one could focus on one instance of the transformation. The deterministic or
maximal guaranteed work would quantify the protocol’s efficiency better than the average work would [15, 20–22].

Reference frame: Reference frames have appeared in the thermodynamic resource theory for heat exchanges [23–
25]. We introduce a non-Abelian reference frame into the thermodynamic resource theory for noncommuting conserved
charges. Our agent’s reference frame carries a representation of the G associated with the charges [10, 19].

The reference frame expands the set of allowed operations from a possibly trivial set. A superselection rule restricts
the free operations, as detailed below. Every free unitary U conserves (commutes with) each charge. The system
charges QjS might not commute with each other. In the worst case, the QjS ’s share no multidimensional eigensubspace.
The only unitary that conserves all such QjS ’s is trivial: U ∝ I.

A reference frame “frees up” dynamics, enabling the system to evolve nontrivially. A free unitary can fail to commute
with a QjS while preserving Qjtot . This dynamics transfers charges between the system and the reference frame.

Our agent’s reference frame doubles as the battery. The reference frame and battery are combined for simplicity, to
reduce the number of subsystems under consideration.

Ancillas: The agent could manipulate extra subsystems, called “ancillas.” A list (ρA, HA, Q1A , . . . , QcA) specifies
each ancilla A. Any ancillas evolve cyclically under free operations. That is, NATO preserve the ancillas’ states, ρA. If
NATO evolved ancillas acyclically, the agent could “cheat,” extracting work by degrading an ancilla [26].

Example ancillas include catalysts. A catalyst facilitates a transformation that could not occur for free in the catalyst’s
absence [26]. Suppose that a state S = (ρS, HS, Q1S , . . . , QcS) cannot transform into a state S̃ = (ρ̃S, H̃S, Q̃1S

, . . . , Q̃cS)

by free operations: S 67→ S̃. Some state X = (ρX, HX, Q1X , . . . , QcX) might enable S ⊗X 7→ S̃ ⊗X to occur for free.
Such a facilitated transformation is called a “catalytic operation.”

Non-Abelian Thermal Operations: NATO are the resource theory’s free operations. NATO model exchanges
of heat and of charges that might not commute with each other.

Definition 5. Every Non-Abelian Thermal Operation (NATO) consists of the following three steps. Every sequence
of three such steps forms a NATO:

1. Any number of free states (ρR, HR, Q1R
, . . . , QcR) can be added.

2. Any unitary U that satisfies the following conditions can be implemented on the whole system:

(a) U preserves energy: [U,Htot] = 0.

(b) U preserves every total charge: [U,Qjtot ] = 0 ∀j = 1, . . . , c.

(c) Any ancillas return to their original states: Tr\A(UρtotU
†) = ρA.

3. Any subsystem can be discarded (traced out).

Conditions 2a and 2b ensure that the energy and the charges are conserved. The allowed operations are G-invariant,
or symmetric with respect to the non-Abelian group G. Conditions 2a and 2b do not significantly restrict the allowed
operations, if the agent uses a reference frame. Suppose that the agent wishes to implement, on S, some unitary
U that fails to commute with some QjS . U can be mapped to a whole-system unitary Ũ that conserves Qjtot . The
noncommutation represents the transfer of charges to the battery, associated with work.
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The construction of Ũ from U is described in [19]. (We focus on the subset of free operations analyzed in [19].) Let
g, φ ∈ G denote any elements of the symmetry group. Let T denote any subsystem (e.g., T = S,W ). Let VT(g) denote
a representation, defined on the Hilbert space of system T , of g. Let |φ〉T denote a state of S that transforms as the
left regular representation of G: VT(g)|φ〉T = |gφ〉T. U can be implemented on the system S of interest by the global
unitary

Ũ :=

∫
dφ |φ〉〈φ|W ⊗ [VS(φ)U V −1

S (φ)]. (70)

The construction (70) does not increase the reference frame’s entropy if the reference is initialized to |φ = 1〉W. This
nonincrease keeps the extracted work “clean” [22, 26, 27]. No entropy is “hidden” in the reference frame W . W allows
us to implement the unitary U , providing or storing the charges consumed or outputted by the system of interest.

A. A zeroth law of thermodynamics: Complete passivity of the Non-Abelian Thermal State

Which states ρR should the resource-theory agent access for free? The free states are the only states from which
work cannot be extracted via free operations. We will ignore S in this section, treating the reservoir R as the system
of interest.

Free states in the resource theory for heat exchanges: Our argument about noncommuting charges will mirror
the argument about extracting work when only the energy is conserved. Consider the thermodynamic resource theory
for energy conservation. Let HR denote the Hamiltonian of R. The free state ρR has the form ρR = e−βHR/Z [16, 26].
This form follows from the canonical ensemble’s completely passivity and from the nonexistence of any other completely
passive state. Complete passivity was introduced in [7, 8].

Definition 6 (Passivity and complete passivity). Let ρ denote a state governed by a Hamiltonian H. ρ is passive
with respect to H if no free unitary U can lower the energy expectation value of ρ:

6 ∃U : Tr
(
UρU†H

)
< Tr (ρH) . (71)

That is, work cannot be extracted from ρ by any free unitary. If work cannot be extracted from any number n of copies
of ρ, ρ is completely passive with respect to H:

∀n = 1, 2, . . . , 6 ∃U : Tr
(
Uρ⊗nU†H

)
< Tr

(
ρ⊗nH

)
. (72)

A free U could lower the energy expectation value only if the energy expectation value of a work-storage system
increased. This transfer of energy would amount to work extraction.

Conditions under which ρ is passive have been derived [7, 8]: Let {pi} and {Ei} denote the eigenvalues of ρ and H.
ρ is passive if

1. [ρ,H] = 0 and

2. Ei > Ej implies that pi ≤ pj for all i, j.

One can check that e−βHR/Z is completely passive with respect to HR.
No other states are completely passive (apart from the ground state). Suppose that the agent could access copies

of some ρ0 6= e−βHR/Z. The agent could extract work via thermal operations [26]. Free (worthless) states could be
transformed into a (valuable) resource for free. Such a transformation would be unphysical, rendering the resource
theory trivial, in a sense. (As noted in [28], if a reference frame is not allowed, the theory might be nontrivial in that
creating superpositions of energy eigenstates would not be possible).

Free states in the resource theory of Non-Abelian Thermal Operations: We have reviewed the free states
in the resource theory for heat exchanges. Similar considerations characterize the resource theory for noncommuting
charges Qj . The free states, we show, have the NATS’s form. If any other state were free, the agent could extract
work for free.

Theorem 7. There exists an m > 0 such that a NATO can extract a nonzero amount of chemical work from (ρR)⊗m

if and only if ρR 6= e−β (HR+
∑
j µjQjR )/Z for some β ∈ R.

Proof. We borrow from [7, 8] the proof that canonical-type states, and only canonical-type states, are completely
passive. We generalize complete passivity with respect to a Hamiltonian H to complete passivity with respect to the
work function W.
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Every free unitary preserves every global charge. Hence the lowering of the expectation value of the work function
W of a system amounts to transferring work from the system to the battery:

∆Tr(WWρW) = −∆Tr(WRρR). (73)

Just as e−βH/Z is completely passive with respect to H [7, 8], the NATS is completely passive with respect to WR for
some β.

Conversely, if ρR is not of the NATS form, it is not completely passive with respect to WR. Some unitary UR⊗m

lowers the energy expectation value of ρ⊗mR , Tr(UR⊗m [ρ⊗mR ]U†R⊗mWR⊗m) < Tr(ρ⊗mR WR⊗m), for some great-enough m.
A joint unitary defined on R⊗m and W approximates UR⊗m well and uses the system W as a reference frame [Eq. (70)].
This joint unitary conserves every global charge. Because the expectation value of WR⊗m decreases, chemical work is
transferred to the battery.

The NATS is completely passive with respect to WR but not necessarily with respect to each charge Qj . The latter
lack of passivity was viewed as problematic in [18]. The lowering of the NATS’s 〈Qj〉’s creates no problems in our
framework, because free operations cannot lower the NATS’s 〈W〉. The possibility of extracting charge of a desired
type Qj , rather than energy, is investigated also in [29].

For example, let the Qj ’s be the components Jj of the spin operator J. Let the z-axis point in the direction of µ,
and let µz > 0:

3∑
j=1

µjJj ≡ µzJz. (74)

The NATS has the form ρR = e−β(HR−µzJzR )/Z. This ρR shares an eigenbasis with JzR . Hence the expectation value
of the battery’s Jx charge vanishes: Tr(ρRJxR

) = 0. A free unitary, defined on R and W , can rotate the spin operator
that appears in the exponential of ρR. Under this unitary, the eigenstates of ρR become eigenstates of JxR

. Tr(JxρR)
becomes negative; work appears appears to be extracted “along the Jx-direction” from ρR. Hence the NATS appears to
lack completely passivity. The unitary, however, extracts no chemical work: The decrease in Tr(ρRJxR) is compensated
for by an increase in Tr(ρRJzR).

Another example concerns the charges Ji and ρR = e−β(HR−µzJzR )/Z. No amount of the charge Jz can be extracted
from ρR. But the eigenstates of −Jz are inversely populated: The eigenstate |z〉 associated with the low eigenvalue
−~

2 of −Jz has the small population e−β~/2. The eigenstate | − z〉 associated with the large eigenvalue ~
2 of −Jz has

the large population eβ~/2. Hence the charge −Jz can be extracted from ρR. This extractability does not prevent ρR

from being completely passive, according our definition. Only the extraction of W corresponds to chemical work. The
extraction of just one charge does not.

The interconvertibility of types of free energy associated with commuting charges was noted in [17]. Let Q1 and Q2

denote commuting charges, and let ρR = e−β(HR−µ1Q1R
−µ2Q2R

). One can extract Q1 work at the expense of Q2 work,
by swapping Q1 and Q2 (if an allowed unitary implements the swap).

B. Non-Abelian Thermal Operations preserve the Non-Abelian Thermal State.

The NATS, we have shown, is the only completely passive state. It is also the only state preserved by NATO.

Theorem 8. Consider the resource theory, defined by NATO, associated with a fixed β. Let each free state be specified
by (ρR, HR, Q1R , . . . , QcR), wherein ρR := e−β (HR−

∑c
j=1 µjQjR )/Z. Suppose that the agent has access to the battery,

associated with the payoff function (68). The agent cannot, at a cost of 〈W〉 ≤ 0, transform any number of copies of
free states into any other state. In particular, the agent cannot change the state’s β or µj’s.

Proof. Drawing on Theorem 7, we prove Theorem 8 by contradiction. Imagine that some free operation could transform
some number m of copies of γv := e−β (HR−

∑
j µjQjR )/Z into some other state γ′v: γ⊗mv 7→ γ′v. (γ′v could have a

different form from the NATS’s. Alternatively, γ′v could have the same form but have different µj ’s or a different
β.) γ′v is not completely passive. Work could be extracted from some number n of copies of γ′v, by Theorem 7. By
converting copies of γv into copies of γ′v, and extracting work from copies of γ′v, the agent could extract work from γv
for free. But work cannot be extracted from γv, by Theorem 7. Hence γ⊗mv must not be convertible into any γ′v 6= γv,
for all m = 1, 2, . . ..

Second laws: Consider any resource theory defined by operations that preserve some state, e.g., states of the form
e−β (HR−

∑c
j=1 µjQjR )/Z. Consider any distance measure on states that is contractive under the free operations. Every
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state’s distance from the preserved state ρR decreases monotonically under the operations. NATO can be characterized
with any distance measure from ρR that is contractive under completely positive trace-preserving maps. We focus on
the Rényi divergences, extending the second laws developed in [26] for the resource theory for heat exchanges.

To avoid excessive subscripting, we alter our notation for the NATS. For any subsystem T , we denote by γT the NATS
relative to the fixed β, to the fixed µj ’s, and to the Hamiltonian HT and the charges Q1T , . . . , QcT associated with T .

For example, γSW := e−β[(HS+HW)+
∑c
j=1 µj(QjS+QjW )]/Z denotes the NATS associated with the system-and-battery

composite.
We define the generalized free energies

Fα(ρS, γS) := kBTDα(ρS‖γS)− kBT log(Z). (75)

The classical Rényi divergences Dα(ρS‖γS) are defined as

Dα(ρS‖γS) :=
sgn(α)

α− 1
log

(∑
k

pαk q
1−α
k

)
, (76)

wherein pk and qk denote the probabilities of the possible outcomes of measurements of the work functionW associated
with ρS and with γS. The state ρS of S is compared with the NATS associated with HS and with the QjS ’s.

The Fα’s generalize the thermodynamic free energy. To see how, we consider transforming n copies (ρS)⊗n of a
state ρS. Consider the asymptotic limit, similar to the thermodynamic limit, in which n→∞. Suppose that the agent
has some arbitrarily small, nonzero probability ε of failing to achieve the transformation. ε can be incorporated into
any Fα via “smoothing” [26]. The smoothed F εα per copy of ρS approaches F1 in the asymptotic limit [26]:

lim
n→∞

1

n
F εα

(
(ρS)⊗n, (γS)⊗n

)
= F1(ρS) (77)

= 〈HS〉ρS − TS(ρS) +

c∑
j=1

µj〈QjS〉. (78)

This expression resembles the definition F := E − TS +
∑c
j=1 µjQj of a thermodynamic free energy F . In terms of

these generalized free energies, we formulate second laws.

Proposition 9. In the presence of a heat bath of inverse temperature β and chemical potentials µj, the free energies
Fα(ρS, γS) decrease monotonically:

Fα(ρS, γS) ≥ Fα(ρ′S, γS) ∀α ≥ 0, (79)

wherein ρS and ρ′S denote the system’s initial and final states. If

[WS, ρ
′
S] = 0 and

Fα(ρS, γS) ≥ Fα(ρ′S, γS) ∀α ≥ 0, (80)

some catalytic NATO maps ρS to ρ′S.

The Fα(ρS, γS)’s are called “monotones.” Under NATO, the functions cannot increase. The transformed state
approaches the NATS or retains its distance.

Two remarks about extraneous systems are in order. First, the second laws clearly govern operations during which
no work is performed on the system S. But the second laws also govern work performance: Let SW denote the
system-and-battery composite. The second laws govern the transformations of SW . During such transformations,
work can be transferred from W to S.

Second, the second laws govern transformations that change the system’s Hamiltonian. An ancilla facilitates such
transformations [15]. Let us model the change, via external control, of an initial Hamiltonian HS into H ′S. Let γS and
γS
′ denote the NATSs relative to HS and to H ′S. The second laws become

Fα(ρS, γS) ≥ Fα(ρ′S, γS
′) ∀α ≥ 0. (81)

Extractable work: In terms of the free energies, we can bound the work extractable from a resource state via
NATO. Unlike in the previous section, we consider the battery W separately from the system S of interest. We assume
that W and S initially occupy a product state. (This assumption is reasonable for the idealised, infinite-dimensional
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battery we have been considering. As we will show, the assumption can be dropped when we focus on average work.)
Let ρW and ρ′W denote the battery’s initial and final states. For all α,

Fα(ρS ⊗ ρW, γSW) ≥ Fα(ρ′S ⊗ ρ′W, γSW). (82)

Since Fα(ρS ⊗ ρW, γSW) = Fα(ρS, γS) + Fα (ρW, γW),

Fα (ρ′W, γW)− Fα (ρW, γW) ≤ Fα(ρS, γS)− Fα(ρ′S, γS). (83)

If the battery states ρW and ρ′W are energy eigenstates, the left-hand side of Ineq. (83) represents the work extractable
during one implementation of the protocol. Hence the right-hand side bounds the work extractable during the transition
ρS 7→ ρ′S. This bound is a necessary condition under which work can be extracted.

When α = 1, we need not assume that W and S occupy a product state. The reason is that subadditivity implies
F1(ρSW, γSW) ≤ F1(ρS, γS) + F1(ρW , γW). F1 is the relevant free energy if only the average work is important.

Quantum second laws: As in [26], additional laws can be derived in terms of quantum Rényi divergences [30–33].
These laws provide extra constraints if ρS (and/or ρ′S) has coherences relative to the WS eigenbasis. Such coherences
would prevent ρS from commuting with the work function. Such noncommutation is a signature of truly quantum
behavior. Two quantum analogues of Fα(ρS, γS) are defined as

F̃α(ρS, γS) := kBT
sgn(α)

α− 1
log
(
Tr
(
ραS (γS)1−α) )− kBT log(Z) (84)

and

F̂α(ρS, γS) := kBT
1

α− 1
log
(
Tr
(

(γS)
1−α
2α ρS(γS)

1−α
2α

)α)
− kBT log(Z). (85)

The additional second laws have the following form.

Proposition 10. NATO can transform ρS into ρ′S only if

F̂α(ρS, γS) ≥ F̂α(ρ′S, γS) ∀α ≥ 1

2
, (86)

F̂α(γS, ρS) ≥ F̂α(γS, ρS) ∀α ∈
[

1

2
, 1

]
, and (87)

F̃α(ρS, γS) ≥ F̃α(ρ′S, γS) ∀α ∈ [0, 2]. (88)

These laws govern transitions during which the Hamiltonian changes via an ancilla, as in [15].
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